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Abstract

Fine-grained activity recognition focuses recognition on
sub-ordinate levels. This task is made difficult due to
low inter-class variability and high intra-class variabili-
ty caused by human motion and objects. We propose that
recognition of such activities can be significantly improved
by grouping and decomposing them into a hierarchy of mul-
tiple abstraction layers; we introduce a Hierarchical Activ-
ity Network (HAN). Recognition in HAN is guided by classi-
fiers operating at multiple levels; furthermore, description-
s of different levels of abstraction are also generated from
HAN, which may be useful for different tasks. We show sig-
nificant improvements in accuracy of recognition compared
to earlier methods. Besides, annotation for fine grained ac-
tivity is challenging, and inaccurate annotation influences
classification performance. We explore an automatic solu-
tion for improving the classification results while auto en-
hancing the annotation quality.

1. Introduction

Activity recognition has been a popular topic of research
in computer vision. The range of activities can vary broad-
ly in terms of their specificity. In this paper, we focus on
fine-grained activities that take place in a fixed environmen-
t, which has potential applications in intelligent home, elder
people care and for daily living assistance. Several activities
of daily life datasets have been introduced. A recent one is
given in [23] which contains 65 different but similar kitchen
activities. The characteristic that these activities take place
in a fixed (and possibly known) environment can be helpful
but also prevents environmental context from being a key
distinguishing feature. Furthermore, the activities of inter-
est can be very similar, e.g. recognizing cutting stripes vs
cutting slices in kitchen tasks. Considerable progress has
been made in classifying such videos, [23][24] but accura-
cy remains low for many of the activities.

Figure 1. Three levels of representation in HAN for an example
video.

There have been many approaches to the problem of ac-
tivity recognition, many of which are hard to apply to the
stated problem of fine-grained activity recognition. The hu-
man locomotion in this problem is of low inter-class vari-
ability so not very discriminative. Human pose is of obvi-
ous importance but the current pose estimation algorithms
are not robust enough to provide discriminative pose con-
figurations [23]. Hence, we resort to use of low-level fea-
tures which has proved effective for many tasks. Howev-
er, the distinctions between various activities in the fine-
grained task are small so similar activities may be difficult
to discriminate. We propose that recognition of such activi-
ties can be significantly improved by grouping and decom-
posing them into a hierarchy of multiple abstraction layers.
The recognition can then be guided by classifiers operat-
ing at multiple levels; furthermore, descriptions of varying
abstractness are also generated which may be useful for dif-
ferent tasks. Use of such a hierarchy has been successfully
explored for image classification [5] problems but not for
activities, to the best of our knowledge.

We describe an abstraction hierarchy model named Hi-
erarchy Activity Network (HAN), which includes Meta lev-
el(s), Base level and Infra level(s), as shown in Figure 1.
Base level is the level at which annotations are provided in
the training data. Meta levels group some of the base lev-
el activities into one, resulting in more abstraction activities.
Infra levels decompose a set of base level activities based on
Infra distinctions. In the example, and in our experiments,
we use only one meta and one Infra level but the technique
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easily extends to the multiple levels. Note that this hierar-
chy is based on abstraction levels rather than the more com-
mon hierarchy derived from temporal decompositions as in,
for example, [22][28].

Construction of Meta and Infra levels from Base level is
by unsupervised clustering based on similarity using SVM
classifiers. As we lack annotations at the Meta and Infra
levels, the nodes may not have semantic names. For the
Meta levels, we can create a name by composition of terms
in the Base level. For Infra levels, it is difficult to provide
a semantic name in unsupervised way, but we can relate the
activities to attributes to construct meaningful phrases.

Independent classifiers are trained for each node in the
hierarchy. We use the score of a path in the network to com-
pute the confidence of labels for a video. We find that this
not only improves recognition accuracy but also gives us
a better attribute prediction and description for the video.
With the annotated attributes provided by [24], each In-
fra level node is associated with an attribute distribution
learned from the training data. To generate Infra level de-
scriptions, we use pre-trained attribute detectors in the video
level. Thus, the attribute prediction in HAN for video is not
only based on the binary attribute classifiers, but also the
Infra level node priors. In activity classification task, we do
not use attribute annotations.

We find that annotation for fine grained activity recog-
nition has two limitations. First, the activity labels can be
confusing; for example, it is hard to tell the difference be-
tween put in pan or pour in annotated video clips. Also,
people have different opinions about when an activity start-
s, and when it ends. For example, it is hard to determine
whether the activity open the fridge includes walking to-
wards the fridge. We find that a better annotated video will
help improve the classification performance. So we propose
an automatic way to improve the annotation. We first pre-
pare a video feature dictionary based on previous annota-
tions. Then we evaluate the feature dictionary using trained
model, replace the original feature with a candidate feature
with highest confidence score, into a new training dataset.
Then we iterate this process to get the final result.

In summary, our contributions are:
(1) Modeling of the mutual and hierarchy information

within fine grained activities.
(2) HAN’s hierarchy is of abstraction type which is dif-

ferent from and complementary to the more common tem-
poral hierarchy (from atomic action to activity to events).

(3) Demonstration that activity hierarchy helps improve
fine grained activity recognition and attribute predictions.

(4) A self updated annotation method improves both the
classification performance and annotation quality.

The paper is organized as follows. Section 2 discusses
related work. Then, we introduce HAN in Section 3, in-
cluding construction and inference using HAN. We present

experimental results in Section 4 and give our conclusions
in Section 5.

2. Related Work
A considerable number of approaches have been pro-

posed in activity recognition problem. In complex dataset-
s such as UCF101 [26] and HMDB51 [12], low and mid-
dle level features [29, 27, 11] are used commonly. A-
mong them, the bag of spatial-temporal interest points
[15] representation, patches [10], attributes [18], dynam-
ic poselet[30], have been widely adopted for human action
recognition. It can be combined with various models such
as discriminative classifiers [16][21], unsupervised gener-
ative models [32], and semi-latent topic models [31]. Be-
sides this holistic representation, researchers also work on
integrating feature sequence arrangement and temporal or-
dering information. Some researchers try to construct plau-
sible temporal structures [9] for different actions agents, but
they ignore the temporal composition within the movements
of a single subject under the framework of holistic represen-
tation. On the other side, temporal context based discrim-
inative models can be applied in coarse grained activities’
classification tasks [4]. Besides, contextual information,
such as background scene context [21] and object interac-
tions [9][33], can also improve the performance of activity
recognition. Our paper uses an abstraction hierarchy which
incorporates contextual information in both the training and
testing stages.

Fine grained image or activity classification poses fur-
ther challenges. One is that the training data is limited due
to the difficulty of acquiring fine grained annotations. Be-
sides, unlike categorization, the differences between fine
grained classes may be subtle and only some key features
may be useful. One approach to address these problems
is to apply specialized domain knowledge [13], which us-
es botany information to help classify leaves. However, this
requires developers to have a deep understanding of the spe-
cific field. Another method is to use crowdsourcing in the
loop [7][3], asking humans to either label or propose parts
and attributes [2][1], which achieves promising results. The
difficulty lies in designing annotation tasks effectively: two
ways are proposed to solve this problem. One is ask hu-
mans to label pre-defined parts and attributes [7][3], which
requires careful design; the other is to use open-ended tasks
[19]. But the quality in this method may be hard to control
and descriptors may be highly varied. The recent improve-
ment for ImageNet is [5], which introduces Hierarchy and
Exclusion (HEX) graphs to captures semantic relations be-
tween any two labels applied to the same object: mutual
exclusion, overlap and subsumption. Similarly, [8] propose
a solution when we cannot find an accurate prediction for a
pre-trained model, it finds a less specific answer that is also
plausible from a pragmatic standpoint.



Figure 2. HAN Flow Chart and Representation. We first build Meta and Infra level in an unsupervised way, then integrate these nodes into
an abstraction hierarchy model. HAN can be used to classify activities and predict attributes in a given input video.

Recently, [34] shows large improvements on the [23] fine
grained activity dataset using pre-detection of objects. They
take advantages that most of the objects are stationary, and
the video is captured with a fixed camera (strong prior inte-
grated). However, it is difficult to generalize this approach
as reliable object detectors which are not always available.
In our HAN solution, we never use the pre-detection ob-
jects, no extra annotations are needed. [25] discusses about
how to find the most discriminative portion of videos, while
we focus on auto improving the fine grained activity anno-
tations and achieving better recognition performance.

3. Hierarchy Activity Network

In this section, we give a description of how to model
HAN and apply it for activity recognition. First, we define
HAN model and activity similarity in detail. Next, we show
how to encode the semantic similarity information to con-
struct HAN model in an unsupervised way. In the third part,
we show how to apply HAN in fine-grained activity recog-
nition and use HAN to generate description in different hi-
erarchy activity levels. The flow chart of HAN is shown in
Figure 2.

3.1. HAN Representation

HAN is a multiple level network which integrates infor-
mation from not only the Base level, but also Meta (super)
level and Infra (sub) level. The design of Meta level and
Infra level follows two intuitions in the fine grained activity
recognition problem. On one hand, some similar base level
activities with limited training samples need a meta classifi-
er to help distinguish from other uncorrelated activities. For
example, Cut Something helps distinguish finer cutting ac-
tivities (e.g. cut stripes) from other non-cut activities. On
the other hand, for certain activity, there may still exist d-
ifferent sub-actions like take&put in fridge, spread. These
sub-actions may be hard for one general classifier to rec-
ognize. Thus, we need to build Infra level to further select

discriminative sub clusters. Here we give the definition for
these three levels specifically.

Base Level: This is the level where the main video labels
are provided and where the activity recognition tasks are
defined.

Meta Level: This is the more abstract level of the base
level. It groups some of the activities in base level by com-
bining similar base level activities.

Infra Level: This is the more detailed level below the
base level. Each activity can be divided into several Infra
level nodes in an unsupervised way. If the dataset provides
attribute annotations, each Infra node can own discrimina-
tive attributes distribution in this level.

We denote Bi for the nodes in the Base level, Mj for
each synthesized node in the Meta level, and Fk for the n-
odes in the Infra level. The confidence for Bi is denoted as
f(Bi|φ(x)), where φ(x) denotes input feature for sample
x. An example representation of HAN model is shown in
Figure 2.

Similarity Measure: HAN automatically generates the
Meta and Infra levels. To build such a network, we need
a similarity metrics. As no similarity annotation is provid-
ed, we choose to use one versus one SVM distance for the
similarity measure. We define a similarity matrix S on the
training dataset. Sij represents the similarity between Ac-
tivities Bi and Bj .

We use training samples from activityBi and activityBj

in base level as an example. To get Sij , we train SVM us-
ing Bi as positive and Bj as negative. For each labeled Bi

or Bj pair, we get a confidence score. We then compute
the average for these two groups of samples. Last, we com-
pute their difference from the average score. The distance
between activity Bi and Bj is computed by the following
formula.

Sij =
1

T

∣∣∣∑
k

(f(Bi|φ(xk))− f(Bj |φ(xk)))
∣∣∣ (1)

where {xk} denotes the training samples with size T .



3.2. HAN Construction

We first analyze the benefits of building meta level and
Infra level using SVM classifier [20] as an example. Then
we state the detailed method of constructing HAN model.

Generating the Meta level: If we use hinge loss func-
tion for optimization, the primal form of objective function
can be written as:

L(w) = C
∑
n

ξn +
1

2
‖ w ‖22 (2)

where C ≥ 0, {ξn} are slack variables, which also rep-
resent the hinge loss function:

`(w) = max(0, 1− y[w>φ(x) + b]) (3)

For misclassified samples, the hinge loss is proportional to
the difference between estimation probability of true label
class i and wrong estimated label class j:

`(w, φ(xn)) ∝ f(Bj |φ(xn))− f(Bi|φ(xn)) (4)

Summing the hinge loss function for class i, we get:

`(w)i =
∑
n

`(w, φ(xi
n)) ∝ −

∑
j

Sij (5)

where {xin} denote the sample set with true label i.
From Equation 5, we observe that L(w) in Equation 2

can be reduced by dropping the loss generated from the first
t smallest elements in i th column of similarity matrix S.
Thus, we can use S to merge different similar activities
classes into one Meta level node Mk, which is the corre-
sponding node in Meta level. In training stage for certain
class Bi, we eliminate similar samples from different class-
es Bj sharing the same Mk.

After we generate S using Equation 1, we apply a greedy
method to select most similar pairs of activities, as shown
in Algorithm 1 below.

Algorithm 1 Similar Activity Pair Selection
Input: similarity matrix S

1: Label all Bi “available”
2: while there is activity classes available do
3: Find (i, j)∗ = argmini,j S

available
ij

4: Change activity Bi, Bj’s labels as “unavailable”
5: Add (Bi, Bj) to merge list L
6: end while
7: for k th pair in L do
8: Assign Mk two children node: Bi, Bj

9: Set path(Bi,Mk) = 1, path(Bj ,Mk) = 1
10: end for
11: return Mk

With SVM, similar examples are still hard to be separat-
ed, while the not similar examples are easy to be separated.

Figure 3. Meta Level Generation Examples.

It is intuitive that the similar categories will still have less
difference than the not similar categories. Using the SVM
metrics, we find that screw open & screw close, wash ob-
jects & wash hands, cut stripes & cut slices belong to the
same meta level nodes. Both intuition and experimental re-
sults shows the SVM metrics is more reasonable than equal-
weight distance metrics.

Naming the Meta Level Nodes: The semantic names
for Mk are synthesized from the activity names Bi and Bj .
Typically, the activity name of Bi is composed like Do Ob-
ject (verb + noun) or Do (verb). For an input activity name,
we first use WordNet to decide which is verb, and noun in
the name of Bi automatically. Then, we generate Meta lev-
el names using a synthesis rule as (vi + ni) + (vj + nj) =
p(vi, vj) + p(ni, nj). Here p(vi, vj), p(ni, nj) mean the
least shared parent of the verb and noun. For p(ni, nj), we
use the WordNet Hierarchy provided by ImageNet [6]. For
example, we need to find the least share parent for pan and
bowl. A path goes up to top from pan is, pan - container -
instrumentality. The path goes up from bowl is bowl - dish -
container - instrumentality. Therefore, the least shared par-
ent of pan and bowl is container. For the verb p(vi, vj), we
temporally use human to name their parent verb due to the
challenges in building verbs mutual relations. In this way,
we can synthesis the Meta level node names like put in pan
+ put in bowl = put in containers.

Generating the Infra Level: The function of Infra lev-
el is to provide more detailed description for each activi-
ty class by clustering them, making a Infra sub class. To
achieve this goal, we prepare two protocols to constrain
the division of fine grained training samples: first, the sam-
ples need to be roughly equal distributed; second, the intra-
class distance needs to be as small as possible. We use
K−means clustering to select the most discriminative fea-
ture groups for representing different sub-activities. The t-
wo protocols are encoded in constraints of clusters’ sizes
balancing and minimizing the total distance sum:

D(K, {xi}) =
K∑

k=1

(
1

Nk

Nk∑
n=1

ynkd(φ(xn), Ck)

)
(6)

where d(φ(xn), Ck) denotes the distance for each fea-
ture φ(xn) to its center Ck. ynk = 1 if φ(xn) belongs to
kth cluster, otherwise ynk = 0.

For building Infra level, we use a loop to find the best In-
fra level separation with K-means. Our algorithm balances



Figure 4. Combining an Infra level Node with Attributes.

the training sample number for each sub class so that possi-
ble solutions for unsupervised classification will be limited..
Then, we use SVM to train the Infra level nodes according
to the separated data.

Naming the Infra Level Nodes: It is difficult to auto-
matically give the Infra level nodes a semantic name (as
the Infra level nodes are generated in an unsupervised way.)
Therefore in Infra level, instead, we attach a template of
semantic attributes for each input video, using predicted at-
tributes as explained below. In the kitchen dataset, the at-
tribute annotations are given [24] and can be used in train-
ing.

Boosting Infra Level with Attributes: HAN can op-
tional integrate activity attributes in a supervised way. This
allows the infra nodes to contain attribute priors which can
then be combined with attribute detectors for improved de-
scriptions. We generate sentence descriptions by filling
in predicted attributes into pre-defined sentence templates.
Four attributes are provided: actions (e.g. take out), tools
(e.g. hand, knife), ingredients (e.g. apple), and containers
(e.g. baking tray, bowl). Given the attribute values, we can
compose a sentence: for example, given Action = taking
out, tool = hand, ingredient = bottle, containers = fridge,
we can generate the sentence : Person takes out a bottle
using hand (from the fridge).

Summary: To give difference level descriptions, for the
Meta level, we use the synthesis name of predicted node
Mj . For the Base level, we use name of predicted base
node Bi. For the Infra level, we use the predicted attributes
to compose a sentence. We introduce how to predict the
attributes in next section.

3.3. HAN Inference

Activity Recognition: For each input video x, we
calculate a coarse to fine path p in HAN. Every path
is composed of a node from the Base level Bi, a n-
ode from the Meta level Mj , and a node from the In-
fra level Fk. It can be written as p = (Bi,Mj , Fk).
Given input video x, we define a vector ψ(p, x), which
ψ(p, x) = [φ(Bi), φ(Mj), φ(Fk), ϕ(Bi,Mj), ϕ(Bi, Fk)].
The φ(Bi), φ(Mj), φ(Fk) are the unary confidences of s-
electing Bi,Mj , Fk to represent the videos. Specifical-
ly, φ(Bi) is the output of a single binary video classifier.
ϕ(Bi,Mj), ϕ(Bi, Fk) are the pairwise term that shows how
likely the path is. It is set equally in our implementation.
The optimal path p∗ is given by maximizing the output of

ω · ψ(p, x):

p? = argmax
p

ω · ψ(p, x) (7)

where the ω is the weight for ψ(p, x), to balance each
term. ω is set equally at the initialization, then we search
these parameter and choose the weight by cross validation
on training dataset.

Attribute Prediction: Within the Infra level, activity at-
tributes are predicted as follows. We first train the video
level attribute detectors using middle level features and an
SVM [20]. Assuming a base level node Bk is decomposed
into Infra nodes Fki, we predict attributes for node Bk by
the following formula:

a? = argmax
ai

φ(ai)
∑

p(ai|Fkj)φ(Fkj) (8)

where φ(ai) is the confidence for the trained attribute
detector, φ(Fkj) is the confidence for the Infra node Fkj .

p(ai|Fkj) is the prior where p(ai|Fkj) =
Nai,Fkj

NFkj
. Nai,Fkj

is the number of samples that belong to node Fkj with the
attribute ai, while NFkj

is the total number of samples that
belongs to node Fkj . Note that this combines the prior ex-
pectations of attributes for a specific node with the actual
detector outputs.

3.4. Auto Annotation Updating

The annotation for fine grained activity needs refinemen-
t. We propose an auto annotation updating method. For the
training dataset T , we break them into N subset Ti. For
each Ti, we leave most of the original training data (where
Tj , j 6= i) in training data set T1, and we use the Ti for im-
provement in set T2. For each example in T2, we prepare a
feature expansion dictionary D, by re cropping the sample
from T2. For example, if we have a sample Xi from T2, we
generate the Xij by modifying the boundary of sample Xi,
put all Xij into our dictionary. Then, we train a detector
using the samples from T1, and test them on T2. We sort
the results and find the best cropped video clips in D, then
update the original Xi in T2. Using a similar strategy, after
we updates the whole training dataset, we train a new fine
grained activity detector. The specific algorithm is shown
in Algorithm 2.

3.5. Discussion on Hierarchy

Building hierarchy has been used in image classification
problem. [17] builds the tree from the top down: the leaf
level is the recognition target. Our idea is to extend the tar-
get layer, by combining nodes into meta level, and decom-
pose nodes into finer level. The semantic hierarchy idea is
novel for the activity recognition problem.

In activity recognition problem, [14] has a different hi-
erarchy concept than our paper. They consider viewpoints



Algorithm 2 Auto Annotation Update

Input: Feature dataset T =
⋃N

i=1 Ti, (Ti∩Tj = ∅, i 6= j)

1: for each subset Ti do
2: Generate specific training set Ci =

⋃N
j=1,i6=j Tj

3: Generate feature dictionary Di = f(Ti), where
f(.) denotes the time-shift and time-truncation opera-
tions on the samples {xi

j} in Ti

4: Train activity detector Mi on Ci

5: for j = 1 to |Ti| do
6: Find expanded feature set di

j = f(xi
j) for xi

j

7: Apply detector Mi on di
j to generate scores sij

8: Select the optimal feature: xi∗
j = argmaxdi

j
sij

9: Replace the original feature: xi
j ← xi∗

j

10: end for
11: end for
12: return T

and poses to create a hierarchy; in other words, an appear-
ance hierarchy whereas ours is a semantic hierarchy. Al-
so, our predicted multi-level description is not based on
the basic-level category annotations, which is different from
their method.

4. Experimental Results
We test HAN on the most widely used fine grained activ-

ity dataset [23]. We first introduce the dataset specifications
and experiment setup, and then provide the results.

4.1. Dataset

This dataset contains 12 different actors, 44 videos, 5609
clips, 881755 frames. It contains 65 fine-grained activities
(listed in a results table later, except one is background ac-
tivity). It includes challenging tasks such as recognizing
the difference between cut dice and cut slices, take out from
drawer and open/close drawer.

HAN focuses on fine-grained activity recognition which
is not the same type dataset as Hollywood and HMDB.
In non fine-grained activity recognition dataset, clustering
high inter-class variance activities will help less.

4.2. Experiment Setup

We use the middle video level features provided by [23].
These include Histogram of Oriented Gradients (HOG),
Histogram of Oriented Flow (HOF) and Motion Boundary
Histograms (MBH). The features were generated around
densely sampled points, which are tracked for 15 frames
in a dense optical flow field. For feature histograms, 4000
words, obtained by K-means clustering over a million sam-
pled features, were used for each type of feature.

We use the same train and test split as in [23]. We use
one actor’s data as testing; the rest (11) for training. Thus,

we use leave-one-person-out cross-validation but only for
the 7 actors that are specified to be test subjects to be con-
sistent with the experiments settings in [23]. For accura-
cy of classification, we use the same evaluation criteria and
code provided by [23]. This consists of measuring average
precision (AP) for each class and a mean average precision
(mAP) across all the classes.

4.3. Meta and Infra Level Generation

We use the unsupervised learned similarity measure to
build the Meta level (described in Section 3.1). In this e-
valuation, we combine 64 Base level nodes (we neglect the
background activity) into 32 Meta level nodes. Figure 3
shows part of HAN structure which demonstrates the simi-
larity pairs explored, and the synthesized nodes by combin-
ing them into Meta level nodes.

For the Infra level nodes, we use the K-means clustering
to cluster nodes, as described in Section 3.2. We do not
decompose Base level nodes that have much less than 10
samples. For others, we divide them into 2 to 4 Infra nodes
each, depending on how many training samples each base
node has; we maintain around or greater than 10 training
samples per Infra node. In the kitchen dataset, we generate
a total of 128 Infra nodes.

4.4. Classifier Training

We train classifiers for nodes at each level by using lib-
svm with Histogram Intersection Kernel (HIK) [20]. For
the base level nodes, we use similarity pairs to help refine
positive and negative training examples. If we are training
the base level node for activity Bi (the most similar class
is activity Bj), we need to use examples with label Bi, and
the negative examples should exclude label Bj’s examples.
Similarly, we do not use examples from sibling nodes for
the Infra level nodes as well. Note that this distinction is
made possible by the use of HAN structure.

4.5. Classification Results

We compute scores for classifiers trained separately for
HOG, HOF and MBH features. We combine the results
of the three features by averaging their confidence values.
Table 1 shows the mAP results for the three features and
their combination for various configurations. The first two
lines, showing the published baseline results and just the
Base layer of HAN are almost the same. The next two lines
show that each of the two levels improves accuracy over
the baseline. The last line shows the results using the en-
tire HAN structure. Note that using MBH features alone,
HAN improves results by 8.5% compared to the baseline;
combined improvement is 5.4% in mAP. The dataset also
includes pose information but we did not experiment with
this feature, as the baseline [23] shows these features to give
a low mAP (34.6%)



Method [23] HAN Method [23] HAN Method [23] HAN Method [23] HAN
change temperature 73.6 75.2 cut apart 38.4 39.4 cut dice 35.9 38.5 cut in 21.9 21.9

cut off ends 16.3 21.1 cut out inside 46.8 52.1 cut slices 54.0 51.0 cut stripes 34.4 56.2
dry 97.4 96.2 fill water from tap 67.2 100 grate 72.6 70.5 lid: put on 20.1 6.5

lid: remove 14.5 11.1 mix 37.6 73.5 move from X to Y 54.8 54.5 open egg 67.4 63.6
open tin 79.5 88.5 open/close cupboard 80.4 79.9 open/close drawer 83.7 79.6 open/close fridge 96.8 95.5

open/close oven 100 100 package X 47.6 65.5 peel 84.2 79.0 plug in/out 61.9 69.8
pour 70.7 70.5 pull out 61.9 100 puree 75.9 100 put in bowl 34.5 37.7

put in pan/pot 24.6 35.0 put on bread/dough 51.5 48.8 put on cutting-board 29.5 35.1 put on plate 26.9 25.9
read 55.4 53.2 remove from package 42.8 38.2 rip open 16.7 12.3 scratch off 6.4 28.7

screw close 50.3 48.8 screw open 58.7 58.3 shake 95.2 93.9 smell 87.4 87.4
spice 47.3 46.9 spread 10.0 38.0 squeeze 98.3 100 stamp 64.6 100
stir 77.7 74.4 strew 43.5 61.6 take & put in cupboard 46.0 46.0 take & put in drawer 43.2 53.9

take & put in fridge 56.9 60.5 take & put in oven 100 100 t. & put in spice holder 89.8 89.1 take ingredient apart 42.1 50.7
take out from cupboard 90.8 93.1 take out from drawer 93.8 93.3 take out from fridge 94.0 80.2 take out from oven 100 100
t. out from spice holder 87.4 75.4 taste 42.4 41.0 throw in garbage 95.9 96.4 unroll dough 45 100

wash hands 56.1 51.6 wash objects 80.6 79.1 whisk 94.4 93.8 wipe clean 12.8 41.6

Table 2. Average Precision for Individual Base Level Activities Recognition.

Method HOG HOF MBH Combine
[23] 52.9 53.4 52.0 59.2
Base 48.7 49.2 54.4 59.1

Base+ Meta 54.1 53.4 58.8 62.5
Base+ Infra 53.5 54.3 59.7 63.5

HAN 53.9 54.9 60.5 64.6

Table 1. Mean Average Precision numbers for different features
and network configurations. Note that complete HAN framework
with combined features achieves the best result.

In recent work, [34] has reported mAP of 70% on the
same dataset. However, they use knowledge of pre-detected
objects, such as the cabinets and refrigerator; hence, we do
not consider these numbers to be directly comparable. One
can argue that such objects could be known in a fixed envi-
ronment but, nonetheless, this reduces flexibility. Without
the use of knowledge of fixed objects, accuracy of [34] is
59.2%, which is lower than our result using HAN. For the
activity classification task, we do not use the attribute anno-
tation provided by [23].

In Table 2, we show mAP performance for individual
activity types. Within the 64 fine grained activities, HAN
gives better results than [23] in 28 activities. Notice that
improvements for several activities are quite large and in
5 classes, AP rises to 100%. Performance is improved for
many challenging activities such as cut. The Meta level n-
ode Cut Something helps distinguish finer cutting activities
(e.g. cut stripes) from other non-cut activities. Similar im-
provements are also observed for the base activities put in
bowl and put in pan/pot.

Infra level nodes can also help improve precision for de-
composable activities. We can see that the take& put in
drawer and take& put in fridge both benefit from decom-
posing the complex actions (take and put in.) Spread in-
volves varying ingredients (bread, butter and oil), different
tools (spoon, knife and hand) which cause high intra-class
variance. Decomposing these types of base nodes into Infra
nodes helps improve the video classification results.

Figure 5. Output of HAN on two test videos. Coarse to fine de-
scriptions are shown.

To show the performance of HAN, we use the feature
provide by our baseline paper. All the experiment settings
are the same except we add in HAN hierarchy (We use the
exactly same feature provided by [23]). Second, kitchen
dataset is very challenging. Few paper use this dataset be-
cause the result in [23] is hard to exceed.

4.6. Infra Level Attribute Experiments

In this section, we describe performance of attribute pre-
diction in Infra Level. The Infra level description is com-
posed by four attribute types: actions, tools, ingredients and
containers. The attribute annotations are provided from [23]
and used during training and for evaluation.

Single attribute detectors are trained using a linear SVM
and features provided from [23], which are applied in both
Base and Infra level nodes. The train and test splits are the
same as for video level classification. We use HAN to pre-
dict attributes as described in Section 3.2 for each category.
Then we use them to fill in a sentence template to describe
the activity; some of the outputs are shown in Figure 5.

For quantitative evaluation of generated attributes, we
calculate the mAP for each category. We find that among
the 218 attributes provided from [23], several come with
very few annotation examples; precision for these attributes
is not reliable so we only include attributes that have at least
50 annotated samples. Under this criteria, there are 20 such
attributes in the action category, 5 in the tool category, 7 in
the container category, and 19 in the ingredients category.

The baseline uses outputs of the attribute detectors only,



Method Action Container Tool Ingredient
Attribute 59.69 47.38 71.48 29.97

Att + HAN 65.03 49.95 72.36 32.41
Table 3. Attribute mAP evaluation.

Attribute Name Attribute Attribute + HAN
add (Action) 42.72 49.56

change temperature 51.22 54.38
put in 59.05 66.51

take apart 27.41 46.92
baking tray (Container) 21.82 14.28

bowl 30.03 35.39
counter 30.64 35.18

cutting board 81.78 85.52
drawer 64.85 67.35

pan 66.61 78.37
pot 35.91 33.57

apple (Ingredient) 28.42 29.81
bottle 56.25 55.10
carrot 9.60 11.47
cheese 6.67 10.84
onion 13.43 23.37
orange 23.14 29.05

paper box 17.57 23.60
spice shaker 73.26 86.98

Table 4. Average Precision for part of Action Attributes, Container
Attributes, and Ingredients attribute.

while our method integrates HAN into the prediction. The
results are given in Table 3. HAN improves attribute pre-
diction by 5.4% for action attributes, 2.6% for Container
attributes, 1% for the tool category and 2.5% in ingredient
category. In total, we improve for about 3% in average.

In detail, we show the accuracy of attribute results for
four actions in Table 4. We observe that HAN improve-
ments are higher in actions that have high intra-class vari-
ability. In Base level, take ingredient apart is of high vari-
ance, because the ingredients can be tomato, orange, dough,
the tools can be hand and knife; also each actor has differ-
ent ways of performing this action. Decomposition of base
level node helps increase accuracy by clustering similar ex-
amples. Take & put in activity is also high in intra-class
variations as it involves different containers such as draw-
er, fridge and cupboard; again, decomposition shows high
improvements. On the other hand, change temperature has
few variations and decomposition does not improve accura-
cy by much.

Table 4 shows attribute prediction results for container-
s. HAN improves results for 5 of the 7 container attributes.
Table 4 shows attribute prediction results for ingredients.
HAN improves results for 13 of the 19 ingredient attributes.
The improvements come about, because HAN brings in ac-

Method HOG HOF MBH Combine
HAN 53.9 54.9 60.5 64.6

HAN + Expand=9 54.3 56.4 63.6 66.4
HAN + Expand=16 54.1 56.8 64.7 67.8

Table 5. Self Annotation Update Improvement

tivity/objects context: for example, cheese is often related to
the strew activity, and orange is often related to the squeeze
activity.

4.7. Annotation Update Experiment

As we have 12 subjects, we use 10 subjects as a training
set (T1 set), 1 subject for annotation improvement (T2 set),
and 1 subject as test data. Using the method described in
Section 3.4, the annotations are updated in T2. Similarly, we
update the annotations for videos in subset in T1. After one
round of iteration, we get improvement of 3.2%, achiev-
ing 67.8% mAP in total based on HAN. We compare to the
original result in Table 5 with two experiment set expan-
sion =16/interval =0.1, expansion =9/interval =0.1 (using
the same feature provided in [23]). In detail, for each fea-
ture in T2 (when per feature expansion = 16, interval=0.1,
total video length = t), we pick a start time point from can-
didate pool [0, 0.1t, 0.2t, 0.3t], and pick a end time point
from candidate pool [0.7t, 0.8t, 0.9t, t]. In this way, one o-
rigin feature will expend to 16 features.

Annotation Quality: In our experiment, we find that
around 23.2% video clips need annotation boundary refine-
ment. After sorting the results, we find that the annotation
for Fridge / Drawer / Cupboard related activities are am-
biguous. That might be because of the open fridge includes
walking towards the fridge, Take out from fridge includes
partial open/close fridge, Take out from drawer includes
partial open/close drawer. Also, whether throw in garbage
should include collect garbage before throwing. Annotation
for fine grained activities is challenging, and auto annota-
tion updates help improve classification performance.

5. Conclusion
We described a new semantic hierarchy model for activi-

ty recognition named HAN. Unlike previous temporal level
hierarchy models, HAN is based on an abstraction hierar-
chy. It includes three different levels which can describe
the videos from coarse grained to fine grained. We demon-
strate that the use of HAN improves the accuracy of activity
recognition and also provides improved attributes for de-
scription. HAN can be easily extended to multiple levels
of hierarchy. It would be also interesting to explore incor-
porating these levels into a temporal hierarchy for longer
duration activities.
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